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A drop in an axisymmetric extensional flow is studied using boundary integral
methods to understand the effects of a monolayer-forming surfactant on a strongly
deforming interface. Surfactants occupy area, so there is an upper bound to the
surface concentration that can be adsorbed in a monolayer, Γ∞. The surface tension
is a highly nonlinear function of the surface concentration Γ because of this upper
bound. As a result, the mechanical response of the system varies strongly with Γ for
realistic material parameters. In this work, an insoluble surfactant is considered in
the limit where the drop and external fluid viscosities are equal.

For Γ � Γ∞, surface convection sweeps surfactant toward the drop poles. When
surface diffusion is negligible, once the stable drop shapes are attained, the interface
can be divided into stagnant caps near the drop poles, where Γ is non-zero, and
tangentially mobile regions near the drop equator, where the surface concentration is
zero. This result is general for any axisymmetric fluid particle. For Γ near Γ∞, the
stresses resisting accumulation are large in order to prevent the local concentration
from reaching the upper bound. As a result, the surface is highly stressed tangentially
while Γ departs only slightly from a uniform distribution. For this case, Γ is never
zero, so the tangential surface velocity is zero for the steady drop shape.

This observation that Γ dilutes nearly uniformly for high surface concentrations
is used to derive a simplified form for the surface mass balance that applies in the
limit of high surface concentration. The balance requires that the tangential flux
should balance the local dilatation in order that the surface concentration profile will
remain spatially uniform. Throughout the drop evolution, this equation yields results
in agreement with the full solution for moderate deformations, and underscores the
dominant mechanism at high deformation. The simplified balance reduces to the
stagnant interface condition at steady state.

Drop deformations vary non-monotonically with concentration; for Γ � Γ∞, the
reduction of the surface tension near the poles leads to higher deformations than the
clean interface case. For Γ near Γ∞, however, Γ dilutes nearly uniformly, resulting in
higher mean surface tensions and smaller deformations. The drop contribution to the
volume averaged stress tensor is also calculated and shown to vary non-monotonically
with surface concentration.

† Author to whom correspondence should be addressed.
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1. Introduction
The effect of surfactant adsorbed on a spherical droplet has been studied extensively

in the limit where the surfactant is insoluble in the bulk fluid phase, and surface
diffusion is negligible compared to surface convection. Under these conditions, a
stagnant cap forms at the trailing pole. The formation of a stagnant cap on a spherical
droplet settling at its terminal velocity has been addressed by Davis & Acrivos (1966),
Sadhal & Johnson (1983), and He, Maldarelli & Dagan (1991) in the creeping-flow
limit. As the sphere settles, surfactant adsorbed along the interface is swept toward
the trailing pole, where it accumulates, creating a Marangoni stress that retards the
surface flow. The surfactant mass balance in this limit demands that regions of non-
zero surface concentration have zero tangential velocity. Thus, a stagnant cap forms
where surfactant has accumulated. When the Marangoni stresses resisting surfactant
accumulation are sufficiently pronounced, surfactant remains distributed along all of
the drop interface, which is therefore rendered completely immobile.

In this paper, the problem of a drop in an extensional flow in the creeping-flow
limit is used to extend our understanding of surfactant effects to strongly deforming
interfaces. Insoluble monolayers are studied over a full range of surfactant concen-
tration using a nonlinear model that accounts for monolayer saturation. Attention
is limited to drops with the same viscosity as the external fluid phase. Stable drop
shapes are shown to behave in a manner similar to the translating droplets; the
interface becomes increasingly stagnated as the surface concentration is increased.
During the deformation, however, the tangential surface flow is non-zero. A simple
relationship is shown to exist between the normal and tangential velocities at high
surface concentration as the drop shape evolves; it reduces to the no-slip condition
at steady state.

When an initially spherical droplet is centred in a pure axisymmetric extensional
flow, it deforms because of the viscous stresses exerted along the drop interface. This
deformation is resisted by the surface tension. The ratio of the charateristic viscous
stresses to surface tension is the capillary number, Ca. For a droplet in a quiescent
system, surfactants adsorb to some surfactant concentration Γeq , reducing the surface
tension to γeq . When fluid motion is imposed, the surfactant distribution is disturbed
from this equilibrium, altering the stress conditions. In order to capture those effects
not simply associated with the decrease in equilibrium tension, Ca is defined:

Ca =
µGa

γeq
, (1)

where µ is the viscosity, G is the applied strain rate and a is the initial drop radius.
The droplet hydrodynamics are altered by surfactants through the interfacial stress

balance (Levich 1962; Edwards, Brenner and Wasan 1991),

[[−p]]n+ [[n · T ]] = −∇sγ + 2Hγn, (2)

where p is the isotropic pressure, T is the viscous stress tensor, the brackets indicate
the jump between internal and external phases, γ is the surface tension, n is the
surface normal, ∇s is the surface gradient operator, and 2H is the mean curvature of
the interface. The Marangoni stress ∇sγ is exerted tangentially; the Laplace pressure
2Hγ acts normally.

These interfacial stresses are coupled with the surface velocity and the surface
mass balance. The tangential streamlines on a surfactant-free droplet centred in an
extensional flow are indicated by the arrows along the drop interface in figure 1.
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Figure 1. A neutrally buoyant drop is suspended in an immiscible fluid of equal viscosity and
subjected to a pure axisymmetric extensional flow. The position of the interface is described by a
cylindrical coordinate system (r, z). An arclength parameterization is adopted, r = r(s) and z = z(s), s
being the arclength parameter, 0 < s < l from drop pole to pole.

There is a ring at the drop equator and poles at the drop tips where the tangential
surface velocity vt is zero. The surface flow diverges from the ring, and flows toward
the drop tips. Adsorbed surfactant is convected from the equator and toward the
drop tips creating surface tension gradients that alter the stresses and therefore the
surface velocity.

Previous work on this problem is reviewed by Stone & Leal (1990), who first
considered the coupling between surfactant effects and drop deformation for leading-
order deformations. Only the more recent contributions are discussed here. In the
limit of dilute surface concentrations, Stone & Leal, and Milliken, Stone & Leal
(1993) studied the effect of insoluble surfactants on the drop deformation. Milliken &
Leal (1994) extended this work to include surfactant solubility and non-unity viscosity
ratios. All of these studies either used a linear surface equation of state to relate the
surface tension and the surface concentration of adsorbed surfactant, or were limited
to concentrations that were sufficiently dilute that the linear approximation was valid.
At higher concentrations, surface saturation and non-ideal surfactant interactions
influence the stresses realized. Pawar & Stebe (1996) studied the effects of surfactant
interactions. Cohesive interactions strong enough to induce surface phase changes
were also studied.

In this paper, the deforming-drop problem is re-investigated to understand how
the mechanical response of the interface varies with surfactant concentration for a
nonlinear surface tension model which accounts for the finite dimensions of surfactant
molecules. Because surfactant molecules have finite dimensions, there is an upper
bound to the surface concentration, Γ∞, that can be accommodated in a monolayer.
This is reflected in the surface equation of state shown as a graph in figure 2, in which
the surface tension reduction caused by surfactant adsorption (the surface pressure
Π = γ0 − γ, where γ0 is the surface tension of the surfactant-free interface) is shown
as a function of the normalized area per surfactant molecule at the interface, Γ∞/Γ ,
where Γ is the surface concentration of surfactant in the monolayer. This is a graph
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Figure 2. Surface pressure Π vs. normalized area per molecule Γ∞/Γ for the Von Szyckowski
model. As the minimum area/molecule is approached, the surface pressure diverges.

of the Von Szyckowski equation:

Π

RTΓ∞
=
γo − γ
RTΓ∞

= − ln

(
1− Γ

Γ∞

)
, (3)

where the surface pressure Π is the work per unit area which must be done to
compress the monolayer. This equation of state can be derived from a regular
solution theory for a monolayer (Guggenheim 1952; Defay & Prigogine 1966) or
from an adsorption-kinetic approach (Frumkin 1925). (In (3), the terms accounting
for surfactant interaction have been neglected.)

In (3), as Γ approaches Γ∞ (i.e. as the surfactant area/molecule approaches its
minimum) the work required to compress the surface diverges logarithmically because
of the area excluded by the finite surfactant cross-section. The derivative of the surface
tension with respect to Γ is:

∂γ

∂Γ
= − RT

(1− Γ/Γ∞)
. (4)

As Γ approaches Γ∞, (4) diverges as a first-order pole. The Marangoni stresses, which
can be expressed as:

−∇sγ = − ∂γ
∂Γ
∇sΓ (5)

are therefore proportional to (4). For physically realizable Γ values (for which the
surface tension is finite), strong changes in the mechanical properties of the system
as the pole is approached prevent it from being reached. This is similar to any simple
thermodynamic model that accounts for space-filling molecules (e.g. square-well or
Lennard–Jones potentials).

Typically, RTΓ∞ � γ0, so the surface tension does not reduce appreciably unless Γ
is near Γ∞. Therefore, for systems with trace surface active impurities, Γeq � Γ∞ and
γeq ≈ γ0. For systems to which surfactants have been deliberately added to reduce the
surface tension, however, Γeq must approach Γ∞. The highly nonlinear response of
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the Marangoni stress in this concentration regime regulates the surface concentration
so that the minimum area/molecule is not reached and the surface tension remains
finite. This nonlinear response strongly alters the hydrodynamics.

In this work, the stagnant cap limit is shown to apply to deformed, axisymmetric
droplets once a stable drop shape is attained. The area occupied by the stagnant cap
depends on the amount of surfactant adsorbed. If the surface concentration is very
low (i.e. the initial surface concentration Γeq � Γ∞), small Marangoni stresses develop
as the flow creates gradients in the surface concentration. This allows the surfactant
to be collected at the drop poles, creating immobile cap regions and mobile regions
near the equator. Because of the local reduction in the surface tension near the pole,
larger deformations result than the clean case.

At elevated surface concentration (i.e. with Γeq only slightly less that Γ∞) only weak
surface concentration gradients form. When the flow is initiated, the tangential velocity
vt tends to sweep surfactant toward the poles. However, because of the singularity
in (4), the Marangoni stress is elevated even for small gradients in Γ , significantly
slowing vt. As a result, Γ is forced to remain nearly uniform, but the surface is highly
stressed tangentially. The mean surface tension increases with surface dilatation, so
smaller deformations result. The droplet deformation cannot be described by simply
accounting for the pure dilution in the Laplace pressure. Rather, the manner in which
the Marangoni stresses have altered the surface tension must be taken into account
in order to describe the system in this limit.

These observations are used to propose a modified surface mass balance for the
high coverage limit which relates the global dilatation of the interface to the local
dilatation. The balance requires that the tangential flow should balance local surface
dilatation so as to maintain a uniform surface concentration. The mass balance is
a generalization to deforming interfaces of the stagnant interface limit commonly
encountered in the study of surfactant-laden non-deforming interfaces. Indeed, once
the steady deformation is attained, the surface velocity does reduce to zero.

The particle contribution to the volume average stress tensor for this flow is calcu-
lated. The axial component varies monotonically with the surface concentration, as
do the Marangoni stresses. However, the radial component varies non-monotonically
with Γeq and is dominated by changes in cross-sectional area except at the highest
surface concentrations studied, where the pronounced Marangoni stresses dominate.

2. Governing equations
2.1. Hydrodynamics

An initially spherical droplet is centred in a pure axisymmetric extensional flow at
a strain rate G. Both the droplet and outer fluids have viscosity µ. The subscript
1 (2) denotes the outer (droplet) fluid. The velocity and pressure fields in the drop
and external phases are denoted by vi and pi, with i = 1, 2, respectively. The position
vector defined with respect to the centre of mass of the drop is denoted by r. Initially,
the droplet radius is a and the surface concentration is Γeq . Corresponding to this
surface concentration is an initial surface tension γeq . The governing equations are
cast in dimensionless form according to the following scales:

v∗i =
vi
Ga

; p∗i =
pia

γeq
; T ∗ =

T

µG
; t∗ = tG; γ∗ =

γ

γeq
; Γ ∗ =

Γ

Γeq
; r∗ =

r

a
, (6)

where dimensionless variables are noted with ∗. Adopting a local state assumption,
γ∗ is determined by the local Γ ∗ according to the surface equation of state (3), recast
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in dimensionless form as:

γ∗ =
γ0

γeq
+ E ln(1− xΓ ∗). (7)

In this equation, two dimensionless quantities appear, the elasticity number E, a
measure of the sensitivity of the surface tension to Γ :

E =
RTΓ∞
γeq

, (8)

and the fraction of the interfacial area that is initially covered by surfactant, x.

x =
Γeq

Γ∞
. (9)

Fixing E and x determines γeq/γo:

γeq

γo
=

1

1− E ln(1− x)
. (10)

Typical parameter values for E and x are discussed below.
For the remainder of the paper, only dimensionless variables are used unless

explicitly noted; the superscript ∗ is dropped for conciseness. The flow in the droplet
and external phases is governed by the incompressible Stokes equations:

∇2vi = ∇pi; ∇ · vi = 0, (11)

where i = 1, 2, respectively.
The velocity of the outer fluid, v1, must agree with the imposed axisymmetric

extensional velocity far from the droplet:

lim
x→∞ v1 = v∞ =

 −1 0 0
0 −1 0
0 0 2

 · r. (12)

At the interface, the velocities are continuous:

v1 = v2 = vs. (13)

In this expression, vs is the surface velocity, which can be expressed in terms of normal
(vn) and tangential (vt) components.

The kinematic condition at the interface requires:

drs
dt

= vn, (14)

where rs is the position vector of a Lagrangian point on the interface. The stress
balance, given in (2), is recast in dimensionless form:

[[−p]]n+ Ca[[n · T ]] = − E

1− xΓ ∇sΓ + 2Hγn. (15)

The dimensionless surface mass balance takes the form:

∂Γ

∂t
+ ∇s · (Γ vt)− 1

Pes
∇2
sΓ + 2HΓ vn = 0, (16)

where the time derivative is defined for displacements of the surface coordinates
normal to the interface as assumed implicitly by Stone (1990) and discussed in detail
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by Wong, Rumschitzski & Maldarelli (1996). This balance contains the surface Péclet
number, Pes, defined as:

Pes = CaΛ, (17)

where

Λ =
γeqa

µDs
(18)

depends only on material constants. By fixing the surfactant material parameters
and initial coverage, (E, Λ, and x), the response of the drop with fixed surfactant
properties to increasing strain rates can be followed by increasing Ca.

The governing equations are recast in an arc-angle formulation where the arclength
s varies from 0 to l, l being a dimensionless contour length measured from one drop
‘tip’ to the other. The contour length l increases from its initial value of π as the
drop elongates. The interface location, r(z), is parameterized in arclength, i.e. r (s) and
z (s) = 0. The drop equator is located at the arclength for which z(s) = 0; the drop
tips are located at r(0) = r(l) = 0. This parameterization obeys:(

∂r

∂s

)2

+

(
∂z

∂s

)2

= 1. (19)

In terms of arc-angle coordinates, the surface mass balance becomes:

∂Γ

∂t
+
∂

∂s
(rvtΓ ) + 2HvnΓ − 1

ΛCa r

∂

∂s

[
r
∂Γ

∂s

]
= 0. (20)

Stokes’ equations are recast in terms of boundary integral equations to give vs for
a droplet in an axisymmetric flow field for fluids of equal viscosity. (Ladyzhenskaya
1969):

vs(xs) = v∞(xs)− 1

8π

∫ s=1

s=0

M(xs, ζ) ·
[[
− p

Ca
n+ n · T

]]
(ζ) ds(ζ), (21)

where M is the axisymmetric Green’s function for Stokes’ flow and ζ is an integration
variable along the interface. Singular behaviour in the normal stress is avoided
by a technique discussed in Pozrikidis (1992), i.e. the property that M obeys the
incompressible equation of continuity is used to subtract away the diverging terms in
the neighbourhood of the pole. The singularity in the tangential stress is avoided in
a similar manner.

These equations are used to find the drop deformation, surface tension and con-
centration profiles that occur as a function of Ca. Here, they are integrated as a
function of surface coverage x to understand the effect of surface concentration on
the interfacial mechanics. In the limit of nearly saturated monolayers, they are used
to guide a reformulation of the mass balance. The details of the solution technique
are given in Pawar & Stebe (1996). The implementation was modified slightly in order
to obtain stable results at the high surface coverages considered.

2.2. Parameter values

In all previous surfactant-related work in this flow, the elasticity number E (or the
corresponding parameter for a linear adsorption isotherm) has been taken to be order
one. While this allows the interplay of Marangoni stresses and deformation to be
elucidated, these values are far larger than those typically realized physically, and pre-
vent the low-concentration regime from being properly understood by overestimating
the strength of the coupling between concentration and surface tension.
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RTΓ∞ γCMC

Surfactant (mN/m) (mN/m) Emin Emax XCMC

C12E8 (a/w) 5.06 34 0.07 0.15 0.999
C12E6 (a/w) 5.99 32 0.08 0.19 0.998
TritonX 100 (a/w) 7.22 30 0.10 0.24 0.997

(o/w) 4.86 9.2 0.08 0.53 > 0.999
DPPC∗ (a/w) 10 30 0.15 0.31 –

The notation (a/w) indicates air/aqueous interfaces; (o/w) indicates oil/aqueous interfaces. These
data were drawn from the following sources. The polyethoxylated surfactant C12E8 was studied by
Lin et al (1996); C12E6 was studied by Pan, Green & Maldarelli (1998), where the notation CnEm

denotes the structure H3C-(CH2)m−1-(OCH2CH2)n-OH. The Triton-X 100 data appears in Stebe
et al. (1989), where Triton-X 100 is the commercial name for the surfactant with the structure
CH3C(CH3)2-CH2C(CH3)2C6H4-(OCH2CH2)n-OH, n between 9 and 10.

∗DPPC denotes dipalmitoyl phosphatidyl choline, a lipid that forms insoluble monolayers at
aqueous–air interfaces. Γ∞ is the inverse minimum area per molecule to which these monolayers
can be compressed, 41 A2/molecule. This molecule does not form micelles. The maximum surface
pressure to which this monolayer can be slowly compressed is about 40 dyn cm−1, or a surface
tension of 32 dyn cm−1. This is reported for the minimum γ(γcmc) column.

Table 1. Material parameters for the calculation of the elasticity number.

In table 1, parameter ranges for E and x are calculated based on data for a number
of surfactants at aqueous–air and aqueous–oil interfaces. (Material constants for a
wide variety of soluble surfactants which are adequately described by (3) are also
provided in the recent review of Chang & Franses (1995).)

The numerator of E is independent of concentration. The denominator can be,
at most, the value at the surfactant-free interface, γo, and, for soluble surfactants,
at least γCMC , the value at a concentration termed the critical micelle concentra-
tion, or CMC. (At this concentration, surfactants form aggregates, termed micelles,
in the bulk. For concentrations greater than the CMC, the monomer concentration
remains roughly at the CMC with additional surfactant forming micelles. The sur-
face tension does not diminish with bulk concentration above this concentration.)
Defining E in terms of these two tensions provides a minimum and maximum value
for this parameter for a particular surfactant. For strictly insoluble amphiphiles,
surface pressure isotherms can be complicated, with features such as phase transi-
tions that cannot be described simply by (3). (The hydrodynamic implications of
these features are discussed in Pawar & Stebe.) However, the surface saturation as-
pects of these monolayers are adequately described by this expression. In this work,
the value for E is set to 0.2, which falls within the range of values reported in
table 1.

The surface coverages x considered in this paper vary from the extremely dilute
(x = 0.01) to extremely concentrated (x = 0.996). In practice, x can assume these
values. Supporting data are presented in table 1. For the soluble molecules, x at the
CMC is always greater than 0.99. For insoluble surfactants on a Langmuir trough,
x can also be forced to such values. Thus, the parameter values considered here (x
ranging from 0.01 to 0.996 and E of 0.2) are physically relevant.

The linear model adopted in prior studies can be derived from (7) in the limit of
x� 1,

γ = 1− ExΓ . (22)
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Figure 3. Deformation Df vs. Ca for (a) 0.01 6 x 6 0.5 and (b) 0.5 6 x 6 0.996. Curve C is the
clean interface result; curve D is the pure dilution x = 0.996 result.

Using the parameters in table 1, the magnitude of Ex is roughly 0.02 for an aqueous–
air surfactant system with a dilute surface coverage x of 0.1. However, the slope of
the surface tension has been taken to be much larger (e.g. Ex in excess of 0.8 was
adopted in Stone & Leal 1990).

Typically, surface diffusion is extremely weak. In this study, Λ is held fixed at
1000γo/γeq . This value for Λ is actually an underestimate for a typical surfactant.
Surface diffusivities are of the order of 10−6 cm2 s−1, viscosities are of the order of
1 cp; for drops of initial radius of 1 cm, this group is about 107.
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3. Results and discussion
The drop deformation, Df is shown in figure 3. (Df is presented in terms of

the difference between the length and breadth of the drop over the sum of these
quantities; Df of 0.33 is a 2:1 ellipsoid). First, consider the curve marked C . This
corresponds to the clean droplet deformation result of Blundell & Duffy (as reported
in Rallison 1984). For this case, the surface tension is uniform, and no Marangoni
stresses are exerted along the interface. This limit can be attained for two cases: either
a surfactant-free drop, or a surfactant for which mass transfer by exchange with the
bulk is sufficiently rapid that Γ is unity everywhere on the interface. (This rapid
mass transfer limit was confirmed in the results of Milliken & Leal (1994) for soluble
surfactants and linear surface equations of state and by Eggleton & Stebe (1998) for
the nonlinear equation of state adopted in this study.)

Deformations that fall above the C curve occur when the dominant mechanism
is tip stretching, i.e. surface convection causes surfactant to accumulate at the drop
tips, locally reducing the surface tension. In order to balance the normal stress jump,
the local curvature increases, causing the drop to elongate. For deformations that
fall beneath the C curve, interfacial dilution is the dominant mechanism. Surfactant
remains uniformly distributed over the stretching interface. The mean surface tension
therefore increases, resisting stretching more strongly than the equilibrium tension,
and smaller deformations result. In Stone & Leal (1990), the tip stretching regime was
realized for weak coupling between the surface tension and the surface concentration
and weak surface diffusion (high Λ). Uniform coverages were realized for strong
surface diffusion or strong coupling between the surface concentration and the tension.

Here, the full range of deformations is realized as a function of surface coverage
x for fixed, realistic surfactant material parameters. Drop deformations for x 6
0.5 are presented in figure 3(a). The deformations for x = 0.01 superpose with
the clean interface result, agreeing to within 0.01%. For x greater than or equal
to 0.1, all drop deformations are greater than the surfactant-free drop, and Df
increases monotonically with x. Tip stretching is dominant. For 0.996 > x > 0.5, drop
deformations are reported in figure 3(b). Over this range of x, deformations decrease
monotonically with x; for x of 0.996, the deformations fall strongly in the dilution
dominated regime for all Ca studied.

Consider first the x 6 0.5 results. (For all profiles presented as a function of
arclength, the arclength s is normalized by the drop half-length l. This allows the
comparison of profiles realized on drops of different lengths on a single graph.)
Gradients in Γ decrease with x. The product xΓ (or Γ/Γ∞ in dimensional form) is
shown in figure 4(a), the Marangoni stresses are presented in figure 4(b). The greater
x values have higher local surface concentrations and stronger Marangoni stresses in
the region of the tip. This strongly reduces the local surface tensions (see the surface
tensions in figure 4c), increasing tip stretching.

Consider the surface concentration and Marangoni stress profiles for x = 0.1 shown
in figures 4(a) and 4(b). The surface concentration has pronounced accumulation in
the tip region, and falls nearly to zero near the equator. The Marangoni stresses are
highly skewed toward the drop tip, and also fall to zero near the equator. These
profiles correspond to stagnant cap behaviour. The strong accumulation of surfactant
near the drop tips occurs because of the initially weak Marangoni stresses (which
are roughly equal to Ex∇sΓ ∼= 0.02∇sΓ ). When the extensional flow is initiated, these
stresses are too weak to oppose the formation of Γ gradients. Surfactant accumulates
strongly at the poles; regions near the equator are swept clean of surfactant. The
accumulation causes strong local Marangoni stresses to develop near the tips. For
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dilute x at fixed Ca, then, the interface has surfactant-rich and surfactant-free regions
at steady state. Such a steady profile was also realized in the study of Stone & Leal
(1990) for the large surface Péclet number and for weak coupling between the surface
tension and the surface concentration. (See figure 3, the β = 0.1 graph on p. 180 of
Stone & Leal.) The significance of this profile in terms of stagnant cap formation was
not noted, however.

Stagnant caps must form once stable drop shapes have been attained when the
surface diffusion is negligible. Requiring vt and r(s) to be zero at the poles, the mass
balance (20) becomes:

Γvt = 0. (23)

That is, on the interface of any steady axisymmetric particle, the tangential velocity
or the surface concentration is zero for insoluble surfactants with negligible surface
diffusion.

The tangential velocity profile for the droplet that has attained its steady shape (to
within our convergence criterion, for which vn < 5×10−4/Ca) is shown in figure 4(d).
For x = 0.1, vt is nearly zero at the tip, whereas surfactant-free regions of the
interface have strong tangential flow. For the higher surface coverages studied, the
surface concentration is not zero anywhere on the drop interface, and so the steady
tangential velocities are strongly reduced everywhere. These results are for large,
finite Λ. The resulting weak surface diffusion flux balances the weak convective flux
of surfactant at steady state, allowing non-zero velocities in the surfactant-covered
regions. When Λ is infinite, vt is strictly zero near the drop tips, as shown for x = 0.1
in figure 4(d). The area stagnated increases with x; for x = 0.5, the entire interface is
stagnated.

Consider now the results for 0.996 > x > 0.5. The corresponding surface concentra-
tion, Marangoni stress and surface tension profiles are given in figure 5(a)–5(d), respec-
tively. The Γ profiles for x approaching unity are nearly spatially uniform. For exam-
ple, for x = 0.996, the initial Marangoni stresses are roughly Ex∇sΓ/(1−x) ≈ 50∇sΓ ;
tangential stresses are large even for perturbative gradients in Γ . The result is an
interface that is highly stressed tangentially, reducing the surface convective flux of
surfactant toward the drop poles, and forcing xΓ to remain locally less than 1. In this
manner, the limiting area/molecule is enforced by the tangential stress balance. For
stable drop shapes at infinite Λ, this high tangential stress limit forces the tangential
flux to zero, so the surface is stagnated for any steady drop shape. For deforming
interfaces, the tangential flux cannot be zero, but must balance local stretching to
keep Γ nearly uniform.

Since Γ is nearly uniform, the interface dilutes as the drop stretches, causing the
mean surface tension to increase and reducing the deformations relative to the clean
interface case. However, the deformation cannot be predicted simply by setting the
Marangoni stresses to zero and updating the surface tension with the diluted surface
concentration at each timestep. Such a simulation was performed for x = 0.996; the
resulting deformation curve is presented in figure 3(b), marked D. This curve predicts
deformations that are lower than those realized from the full simulation.

The reason for the poor agreement is that the simple dilution simulation neglects
the strong Marangoni stresses (see figure 5b). This stress is generated by a reduced
surface tension at the drop pole relative to the value at the equator. The interface
deforms more than the pure dilution case because of the weak tip stretching induced
by this surface tension profile.

This is apparent in figure 5(c), where γ(s) is shown for increasing x values. As the
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Figure 6. A comparison of the full (lines) and approximate (symbols) solutions for x = 0.996 for
(a) vt vs. s and (b) vn vs. s as a function of time.

surface coverage increases, the surface tension profiles have nearly identical shape,
but are displaced vertically. This shift in the dimensionless surface tension profiles is
caused by the increased sensitivity of γ to dilution as x approaches 1. Plotting the
surface tension as γ(s)− γav , where γav is based on the average surface concentration.

Γav =

∫ l

s=0

Γds

l
, (24)

accounts for this dilution. The similarity of form is apparent, then, as these profiles
can be superposed (see figure 5d).

These observations are used to simplify the surface mass balance in the limit of
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x approaching unity. If the fluxes associated with the spatial variation of Γ are
neglected, (20) becomes:

− 1

Γ

∂Γ

∂t
=
vt

r

dr

ds
+

dvt
ds

+ 2H vn = ∇s · vs. (25)

This mass balance governs the distribution of surfactant on a uniformly diluting
interface. Noting that the (dimensional) surface concentration Γ = N/A, where N is
the initial number of moles of surfactant on the interface, and A is the total area,
this balance requires that the fractional global dilatation of the interface be equal to
the local dilatation. The time evolution of vt and vn for both the full solutions and
simulations are shown in figure 6(a) and 6(b). During the evolution of the drop shape,
(25) does not constrain the interface to behave as if it were incompressible. (In fact,
if the interface were incompressible, the drop shape would not change from its initial
spherical geometry.) Rather, so long as the interface stretches to dilute Γ, the surface
divergence of the velocity is non-zero. At steady state, the interface is incompressible;
but since vn is zero, vt is also zero, so the interface is stagnant.

While (25) neglects the fluxes associated with spatial variations in Γ , it captures
the dependence of Γ on arclength extremely well in the high coverage limit. In figure
7, the profiles from using either the simplified balance (25) or the full mass balance,
(20) are compared for x = 0.996 as a function of Ca. The agreement is very good
for Ca up to 0.05, for which the deformation is 0.15 (i.e. the drop length is nearly
35% longer than the breadth). For Ca = 0.06, the interface becomes increasingly
dilute, i.e. xΓav ∼ 0.94, less than the initial value of 0.996. As xΓ reduces because of
this dilution, the Marangoni stresses become less pronounced for a given Γ gradient.
Gradients in Γ up to 10% over the length of the drop develop, so fluxes associated
with gradients in Γ are no longer completely negligible. Still, the main features of
the system are captured. The deformations superpose with the full simulation on the
scale of the figure and agree to less than 1% at the highest Ca studied, with error
decreasing as Ca is reduced. Similar agreement for all profiles was found for the
transient results.

These results are observations from the numerical simulations; a strict perturbation
analysis about x of unity was not performed because of the singularities in the normal
and tangential stresses. As x approaches 1, not only do the tangential stresses diverge,
but the surface tension strongly decreases. However, the pole in the tangential stress
manifests first, as it is first order, and diverges faster than the logarithmic singularity
in the normal stress balance. Because of this, the surface concentration is forced to
be uniform by the tangential stresses at an x value for which the surface tension
has not yet been strongly reduced. This is true in general for any surface equation
of state that accounts for excluded area. For example, the two-dimensional van der
Waals equation of state (see Davies & Rideal 1961), which has a first-order pole as
x approaches unity in the surface tension and a second-order pole in its derivative.
Again, the tangential stresses would diverge first, forcing Γ to be uniform, while the
surface tensions are still finite.

In summary, for high surface concentration, the surface mass balance for the
uniformly diluting interface requires that the tangential convective flux balances local
surface dilatation. The tangential stresses that develop regulate the surface velocity
so that this purely diluting interface condition is upheld. The normal stress balance
is simply given by the integral of the tangential stress condition with respect to the
arclength.

The limiting behaviour occurs because of the occurrence of a pole in the tangential
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stress of higher order than the pole in the normal stress. Considering the stress
balance in the form:

n

[[
− P

Ca

]]
+ [[n · T ]] = − E

Ca

x

1− xΓ ∇sΓ +
1

Ca

[
γo

γeq
+ E ln(1− xΓ )

]
2Hn, (26)

it is clear that the tangential stress also requires uniform surface concentrations for
either infinite E or small Ca. However, neither limit is interesting physically. For finite
E and infinitesimally small Ca, the surface does not deform. The tangential stresses de-
mand that Γ remain uniform; the mass balance requires that vt be zero. Therefore, this
limit corresponds to a non-deforming stagnant particle. In the limit of infinite E, finite
Ca, the surface tension reduces without bound, and the interface becomes undefined.
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The surface saturation behaviour observed in this study occurs at finite values
of E/Ca. The larger this ratio is, the smaller the x value for which Γ remains
uniform because of strong Marangoni stresses. For example, in figure 8(a) and 8(b),
the Γ and Df profiles are compared at x = 0.5 for E = 0.2 and E = 8.0 at fixed
Ca. The Γ profile for the higher E value has significantly weaker gradients; the
deformation Df remains dilution dominated throughout the deformation process.
Thus, overestimating the coupling between γ and Γ prevents the low-concentration
behaviour of the interface from being captured.

The impact of surface saturation on the stagnant cap formation for spherical
droplets was studied by He et al. (1991). Their results indicate that for fixed E values,
the cap angle is greater for the model adopted here than for the linear equation
of state. This is simply because the linear equation does not obey saturation, and
therefore allows surfactant to be packed more strongly at the pole. This strongly
underestimates the degree of stagnation of the interface. Here the surface is shown to
be completely stagnated for surface coverages as low as 0.5 for E = 0.2. The linear
equation of state would give the Marangoni stress dependence as :

[[n · T · t]] = −E x

Ca

∂Γ

∂s
. (27)

A completely stagnated surface might be realized for the drop in the extensional flow
for the linear constitutive behaviour, but only if unrealistically large values for E are
adopted. Note, however, that the linear model has potential complications since the
surface tension tends to zero as rapidly as the tangential stress diverges.

The volume average stress tensor is calculated to understand the rheology of dilute
dispersions (Taylor 1932). The particle contribution to this stress is given by Σ:

Σ =

∫
S

(2Hγn+ ∇sγ)x dA, (28)

where S is the surface of the drop. The two components of Σ are shown in figure 9
as a function of x and Ca. When scaled with the clean interface surface tension,
γo/a, both Σrr and Σzz decrease monotonically as x increases because the equilibrium
surface tension decreases (see figure 9(a)(ii) and 9(b)(ii)).

When scaled with γeq/a, however, Σzz increases monotonically with x and Ca, as
expected, since the Marangoni stresses which oppose vs (which has a strong axial
component) also obey this trend. The radial component Σrr varies non-monotonically
with x. At fixed Ca, the greater the deformation Df, the smaller the cross-section of
the droplet, and the smaller is Σrr . The variation of Σrr with Ca also depends on x.
For x < 0.85, Df is larger than the clean case, and increases strongly with Ca. Thus,
the cross-section of the drop diminishes, and Σrr decreases with Ca. For x of 0.95
or greater, however, Df is less than the clean interface case and decreases weakly
with Ca. The weak changes in cross-section do not determine Σrr; rather, the large
Marangoni stresses in this regime cause Σrr to increase with Ca.

4. Conclusions
An upper bound exists on the surface concentration that can be adsorbed in a

monolayer because of the finite dimensions of surfactant molecules. In this study,
the behaviour of a droplet in an extensional flow is studied for physically rele-
vant values of the surfactant material parameters. The hydrodynamics are strongly
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altered by varying the fraction of the interface initially covered by insoluble surfac-
tant.

Stagnant tips form on the droplet once steady shapes are attained at low surface
coverage (x � 1). The stagnation spans from the tips to some arclength. From this
arclength to the equator, the interface is mobile. The portion of the interface stagnated
increases with x, unitil the entire interface is completely stagnant.

A full range of deformation behaviours are realized with increasing x, from strong
tip stretching with concomitant strong Γ gradients at low x to dilution dominated
deformations with weak Γ gradients at larger x.

The effect of surface saturation for an insoluble surfactant is to generate large
Marangoni stresses for perturbative departures of the surface concentration from
a uniform distribution. This observation is exploited to simplify the surface mass
balance by assuming that fluxes associated with surface concentration gradients are
negligible. The results from this simplified formulation are shown to agree with the
full simulation.

This simplified mass balance is an extension of the stagnant surface limit com-
monly invoked for non-deforming surfactant-laden interfaces, and reduces to a stag-
nated surface condition at steady state. This framework should simplify the study
of pronounced Marangoni effects at high surface concentration on deforming inter-
faces.

Stagnant tip formation may be important in the phenomenon of tip streaming,
in which small droplets are shed from the pointed parent drop tips (deBruijn 1993).
Tip streaming has been observed either in fluids of unknown purity or for low
surfactant concentrations on drops of viscosity ratio less than unity. As the surfactant
concentration is increased, tip steaming is suppressed. In the experiments of deBruijn,
tip streaming on drops in shear flows was investigated. The surface tension of the
small droplets that were shed was far lower than that of the parent drops, suggesting
that surfactant has accumulated at the tips of the parent drop.

The mechanisms described in this paper provide a potential explanation for these
observations. At dilute surfactant concentration, stagnant tips form, with significant
accumulation of surfactant in the tip regions. This promotes increases in local cur-
vature. For low-viscosity fluids, this may lead to pointed tips like those observed in
experiment. For Ca large enough to promote drop shedding, drops shed from these
tips would be rich in surfactant, with surface tensions lower than the parent drops.
At elevated concentration, the coverage x increases, suppressing the occurrence of
large surface concentration gradients. Or, if adsorption/desorption exchange is rapid,
the effect of increasing bulk concentration is to decrease the effective bulk diffusion
timescales, allowing the surfaces to be restored to a uniform surface concentration
and a stress-free interface. In either case, the accumulation of surfactant at the tips
that form at low concentration would be eliminated.

Finally, these results underscore that a nearly uniform surface concentration profile
does not imply that an interface is remobilized (or behaving hydrodynamically as if it
were clean). Remobilization occurs only if the surfactant mass transfer is rapid enough
to keep the surface concentration uniform and in equilibrium with the surrounding
solution (Stebe, Lin & Maldarelli 1991; Wang, Maldarelli & Papageorgiou 1999).
In the absence of mass transfer between the interface and the bulk, however, only
Marangoni stresses and surface diffusion act to enforce the maximum packing limit.
Typically, surface diffusion is weak. Thus, as demonstrated in this study, strong
Marangoni stresses resist the local accumulation of surfactant, forcing the surface
concentrations to be uniform in this limit.
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